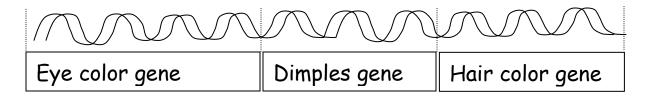

DNA: The Molecule of Heredity

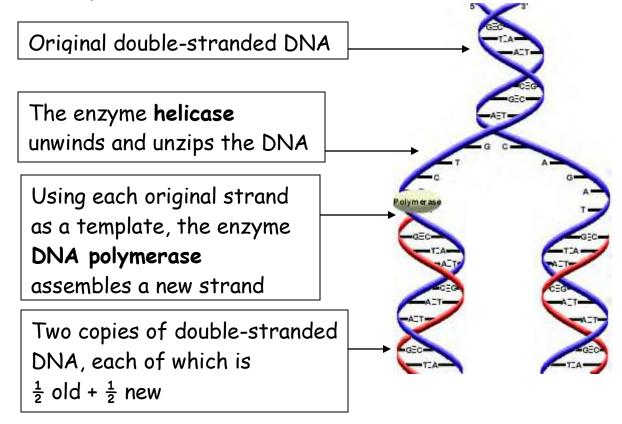
DNA


- Deoxyribonucleic acid
- Is a type of nucleic acid
- What chromosomes (and genes) are made of
- Made up of repeating nucleotide subunits
- 1 nucleotide looks like:

- Shape is a double helix
 - Double helix: 2 spirals wound around each other
 - Rosalind Franklin took an X-ray photo of DNA
 - James Watson and Francis Crick interpreted the photo and discovered the double helix structure (They won the Nobel Prize)

- Genes: stretch of DNA that codes for a trait
 - \circ The code is the order of the bases (letters)
 - Genes are hundreds or thousands of bases long

Chargaff's Rule


 In DNA, the amount of A = the amount of T the amount of C = the amount of G

DNA is complementary

- Complementary: bases on one strand match up with the bases on the other strand (A-T and G-C)
- Example: Strand 1- ATG GGC CTA Strand 2- TAC CCG GAT

Replication

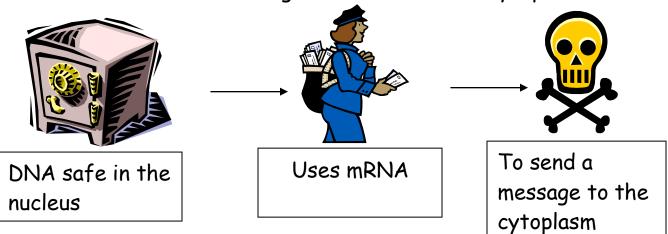
- Process by which new copies of DNA are made
- Happens to duplicated chromosomes before mitosis and meiosis
- Semi-conservative replication: Each new piece of DNA is made up of 1 old strand and 1 new strand

DNA never ever leaves the nucleus

 DNA is the master copy of the directions a cell needs to live so it needs to be protected

DNA in the nucleus is safe

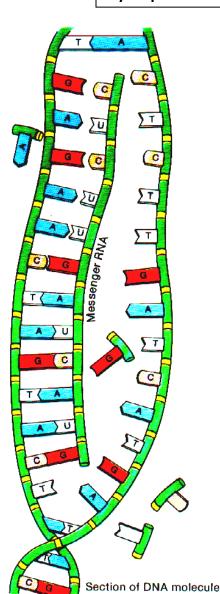
But DNA in the cytoplasm can be destroyed

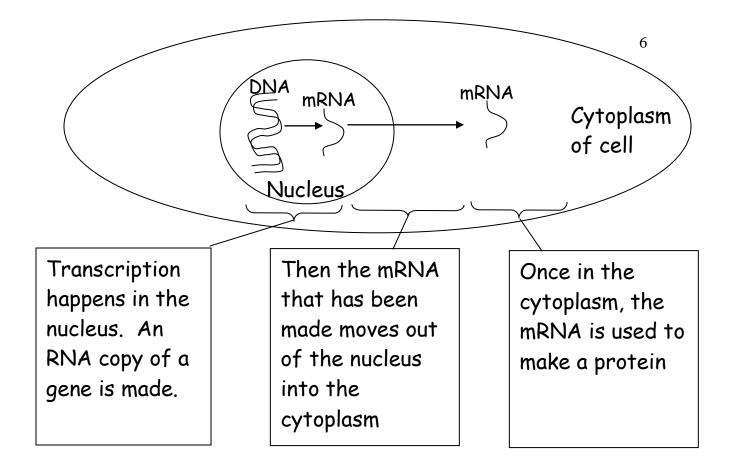

RNA is a copy of DNA that goes out into the cytoplasm to tell the cell what to do in order to stay alive

- RNA: ribonucleic acid
- You can always make more RNA so it's ok if it gets destroyed (You can't make more DNAIII)

destroyed (You can't make more DINA!!!)					
	DNA	RNA			
How many	2	1			
strands?					
Nucleotide subunit	Phos- phate Group Deoxyribose Sugar Base	Phos- phate Group Ribose Sugar Base			
	Deoxyribose sugar	Ribose sugar			
Bases	Thymine (T) Adenine (A) T-A	Uracil (U) Adenine (A) U - A			
	Guanine (G) Cytosine (C) G - C	Guanine (G) Cytosine (C)			

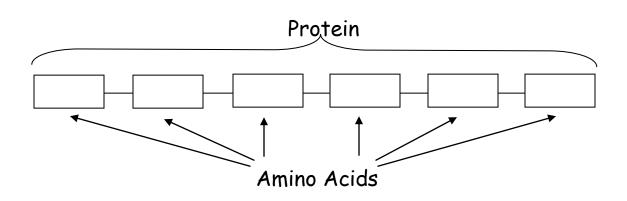
Transcription

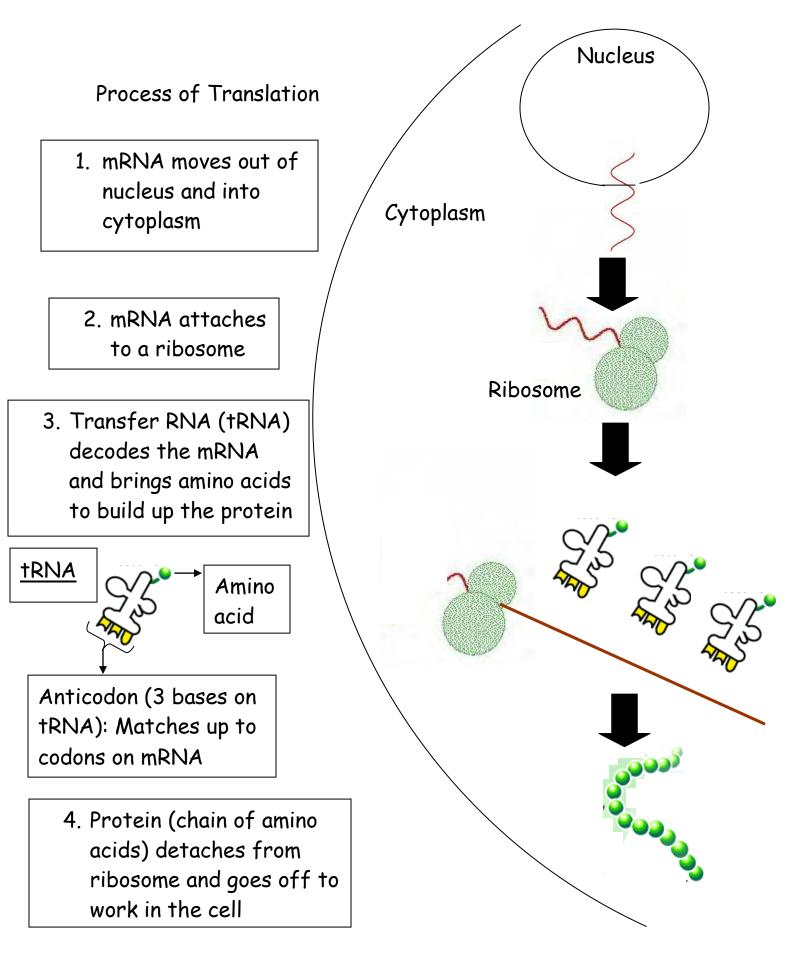

- Definition: RNA is made from 1 gene in DNA
- The type of RNA made is called mRNA (messenger RNA) because it sends a message from DNA to the cytoplasm



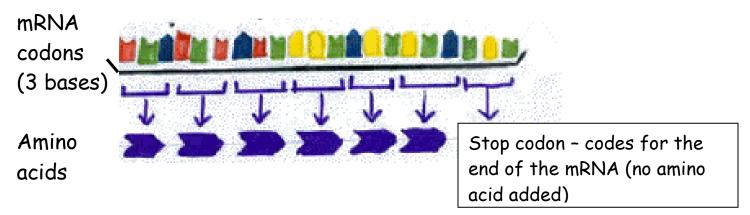
- Transcription
 - o Unzip one gene in DNA
 - Match up bases to <u>one</u> side of a gene in DNA
 - mRNA detaches from the DNA
 - mRNA moves out of the nucleus and into the cytoplasm

DNA: GAG AAC TAG TAC RNA: CUC UUG AUC AUG

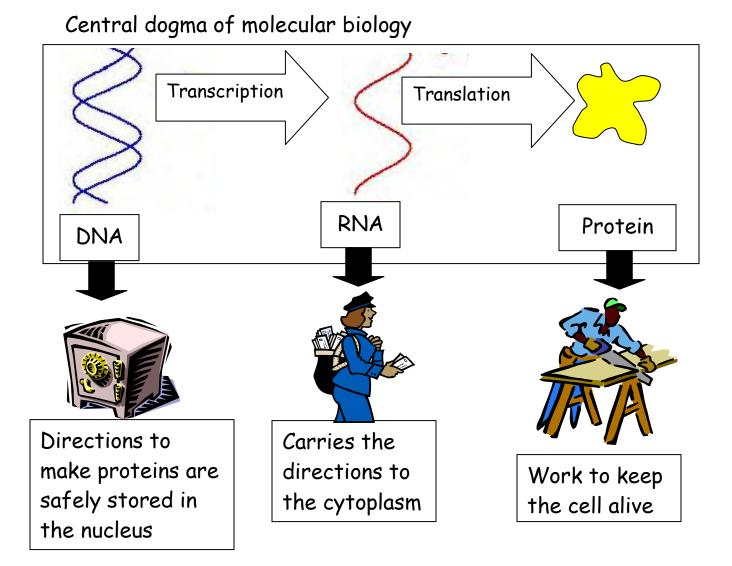

For figuring out RNA: A binds U C binds G



How does mRNA tell the cell what to do?


- mRNA is a message that codes for a protein
- Proteins are made in the cytoplasm and then work to keep the cell alive
- Translation (protein synthesis): Process of making a protein
- Proteins are made up of amino acids (small building blocks)
- There are 20 different types of amino acids

Genetic Code


Code that matches codons in mRNA to amino acids on tRNAs

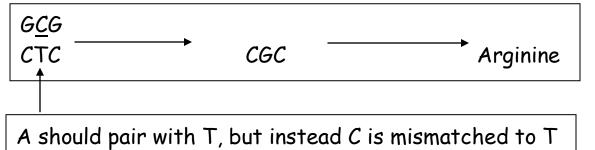
	U	C	A	G	
U	UUU Phenyl- UUC alanine UUA Leucine	UCU UCC UCA UCG	UAU UAC UAA Stop codon Stop codon	UGU UGC UGA UGA Stop codon Tryptophan	UCAG
с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC - Histidine CAA CAG - Glutamine	CGU CGC CGA CGG	UCAG
A	AUU AUC AUA AUG Methionine start codon	ACU ACC ACA ACG	AAU AAC AAA AAG Lysine	AGU AGC AGA AGA AGG Arginine	UCAG
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Aspartic GAC acid GAA Glutamic GAG acid	GGU GGC GGA GGG	UCAG

- 1. Read your mRNA codon \rightarrow ACU
- Find 1st base on the left, 2nd base on the top, 3rd base on the right. Find where they all cross in the chart.
- 3. Read your amino acid. \rightarrow Threonine

Different codons code for different amino acids!!!

Mutation

- a change in the DNA sequence
- It's a mistake that's made during replication or transcription
- can be harmful: diseases or deformities helpful: organism is better able to survive neutral: organism is unaffected
- if a mutation occurs in a sperm or egg cell, that mutation is passed onto offspring


• if a mutation occurs in a body cell, that mutation affects only the organism and is not passed onto offspring

Types of mutations

- 1. Point mutations: Bases are mismatched
 - Harmful when: a mistake in DNA is carried into mRNA and results in the wrong amino acid

Correct DNA	Correct mRNA	Correct amino acid
GAG CTC	→ <i>c</i> ∪ <i>c</i> ──	Leucine

Point mutation in DNA Mutated mRNA Wrong amino acid

 Not harmful when: a mistake in DNA is carried into mRNA but still results in the correct amino acid

- 2. Frameshift mutations: bases are inserted or deleted
 - Are usually harmful because a mistake in DNA is carried into mRNA and results in many wrong amino acids

Correct DNA:	ΑΤΑ ΤΑΤ	CCG GGC	TGA ACT
Correct mRNA:	UAU	GGC	ACU
Correct amino acids:	Tyrosine	Glycine	Threonine

Extra inserted base shifts how we read the codons (3 bases), which changes the amino acids

Frameshift mutation	AT <u>Ğ</u>	ACC	GTG	Α
in DNA:	TAC	TGG	CAC	Т
Mutated mRNA:	UAC	UGG	CAC	U
	-			
Wrong amino acids:	Tyrosir	ie Tryptopr	nan Histad	ine

- 3. Chromosomal mutations
- chromosomes break or are lost during mitosis or meiosis
- broken chromosomes may rejoin incorrectly
- almost always lethal when it occurs in a zygote

Causes of mutations

- mutagens: anything that causes a change in DNA
- examples: X rays, UV light, nuclear radiation, asbestos, cigarette smoke